If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24s^2-90s+66=0
a = 24; b = -90; c = +66;
Δ = b2-4ac
Δ = -902-4·24·66
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-42}{2*24}=\frac{48}{48} =1 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+42}{2*24}=\frac{132}{48} =2+3/4 $
| 11(p-3=5(p+3) | | 3-3(x+5)+8x=7+1 | | (9x+63)=99 | | 1/5n-13=-2 | | x+11+28=3x-7+21 | | 8(1x+6)=80 | | -3s-18=6 | | 10k^2-1210=0 | | 18w-13w+w-w=10 | | 16-9b=-11 | | 13x-15x+8=2-24 | | 18k^2+45k-63=0 | | 0=23w-w^2-132 | | -11=-1/6x-3 | | 18-3f=9 | | x+-12=30 | | 15(x+8)+15-14x=-4 | | 56=8(f-925) | | 12z^2+66z+30=0 | | 3(2x+1)=9(x+3) | | 3(x+4)=8(x+1) | | f/20+710=736 | | 4u^2+38u+18=0 | | 7m-18=1m | | 3n+6−2n=+4 | | 8(x-4)-3(x-4)=5(x-4)+x | | 1/3d-14=-5 | | 3x+-9=45 | | 2k^2+26k+24=0 | | n+21=0 | | 17-x=13∙15+6 | | 10v-8v=20 |